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PROBABILITY MODELS FOR
BATTLE DAMAGE ASSESSMENT
(SIMPLE SHOOT-LOOK-SHOOT AND BEYOND)

D. P. Gaver
P. A. Jacobs

0. Introduction and Summary

Battle-damage assessment (BDA) is an aspect of information war (IW) that
has always promised to add to the efficiency of combat engagements.
Furthermore, the capability of U.S. forces to carry out BDA in an accurate and
timely manner has been and will be enhanced as increasingly sophisticated
C4ISR sensor and communication systems become operational.

The purpose of this report is to introduce and develop analytical probability
models for simplified BDA situations. In spite of the precision of modern
weaponry and sensor/communication systems, shots fired at targets do
occasionally miss (or cause only partial damage). Consequently a sequence of
more than one shot may be directed at a particular target to increase the
probability of kill. The role of BDA in such a setting is to make a judgment as to
whether further shots are actually necessary; it has impact on both the logistics
and economics of combat, and may also influence a shooter-defender’s
vulnerability. But BDA will not be error-free or perfect, nor will it be cost-free.
Consequently this paper reports some features of tradeoffs between kill

probability, pk, and the capacity of a hypothetical BDA system to correctly judge




the effect of a shot. Sample tradeoffs are illustrated in Table 1 below, and later
graphically. The reader may skip to Section 3 for a look at illustrative tradeoff
graphs after examining Section 1 in which the problem addressed here is
formalized.

Related work is as follows. Evans (1996), Aviv and Kress (to appear) and
Manor and Kress (to appear) obtain results for models of BDA in which there is a
fixed collection of targets with shoot-look-shoot tactics. Gaver, Jacobs and
Youngren (1997) carry out BDA analyses in a more nearly total dynamic systems
setting.

1. Simplest Formulation of a Battle-Damage Assessment Problem

We advance the following as an ultimately simple formulation.

(a)  Either defensive shots are taken at a target, or the shots are offensive, as in

a deep strike action. The probability of kill (total target destruction) on a shot is

assumed to be a constant, px (constancy can be relaxed). The target is either killed

on one such shot or not; there is no partial damage. This activity is generically

called Shooting.

(b) A Battle Damage Assessment (BDA) capability is represented as follows; it

is called Looking (or BDA):

(b-1) bk = probability that if the target is killed it is reported killed (no more
shots are taken).

(b-2) bia=1-bik = probability that if the target is killed it is (erroneously)
reported alive. The parameters bk, and by, are conditional probabili-
ties, applicable only when a kill has actually occurred. Hence by +
big =1.

(b-3) bag = probability that if the target is missed, i.e. is alive after a shot, it is so

reported.




(b-4) bak = 1-bg, = probability that if a target is alive it is reported as killed.
Again by, and by are conditional probabilities, applicable if the target
has been shot at and missed, hence is still alive.

Clearly one wants bix and by, high, i.e. each close to unity. It is possible that these

probabilities are a net effect (“fusion”) of several kinds of looks. It is assumed

here that Shooting and Looking are independent chance events, with known and
constant probabilities px and bjj, i, j designating a, k in general. Note that this
doesn’t account for the sometimes reasonable possibility that px(2), the
probability of 2nd shot kill (given a first-shot miss) may exceed px(1), the reason
might be that the shooter has more time to achieve a firing solution, the target is
closer, etc. On the other hand such factors might well change if the target,
realizing it is under attack, takes evasive action after a first-shot miss; then px(2)
might be smaller than pk(1); subsequent shots might well differ in their
probabilities of success also. It is even possible that the target-prey could turn
into a predator and attack the defender, suddenly reducing pk to zero by

destroying same.

A paper that discusses similar problems, and contains further references, is
Almeida, Gaver and Jacobs (1995). See also Evans (1996) and Aviv and Kress (to
appear) and Manor and Kress (to appear).

Table 1 presents results of models for various shooting tactics described later

in this section and in Section 2.




TABLE 1
Target Kill Probability and Mean Shots per Target
as Function of Firing and Assessment Rules and Parameters

S(1) S(2) SLS(2) SLS()
pk | KD) | K2 k@)/2] s2) m2) s(2)/m2)]| s() ml=) s(eo)/mleo)
b=0.5
03 | 03 | 051 026 | 041 150 027 | 046 2 0.23
05 | 05 075 038 | 063 150 042 | 067 2 0.34
07 | 07 | 091 046 [ 081 150 054 |08 2 0.41
09 | 09 [ 099 050 | 095 150 063 | 095 2 0.48

b=0.7
0.3 03 | 051 026 | 045 158 0.28 059 221 0.27
0.5 05 1075 038 | 0.68 1.50 0.45 0.77 1.87 0.41
0.7 07 | 091 046 | 083 142 0.58 0.89 1.65 0.54
0.9 09 1 099 050 | 09 134 0.72 097 149 0.65

b=0.9
0.3 03 | 051 026 | 049 1.66 0.30 081 279 0.29
0.5 05 | 075 038 | 073 1.50 0.49 091 1.92 047
0.7 07 | 091 046 | 089 134 0.66 096 148 0.65
0.9 09 | 099 050 | 098 1.18 0.83 099 1.21 0.82

b=0.95
0.3 03 | 051 026 | 050 1.68 0.30 090 3.03 0.30
0.5 05 | 075 038 | 074 1.50 0.49 095 1.95 0.49
0.7 07 { 091 046 | 090 1.32 0.68 098 1.45 0.68
0.9 09 1 099 050 | 099 1.14 0.87 099 1.16 0.85

Legend:

S(1) means one shot is fired at each target;

S(2) means two shots are (always) fired at each target;

SLS(2) means at most two shots are fired;

SLS(-) means that shots are fired until BDA asserts a kill;

b means probability of correct BDA (= by, = bk here for simplicity only);

s(1) means the long-run kill rate, 1 shot/target;

k(2) means the long-run kill rate, 2 shots/target;

s(2) means probability an engaged target is killed, or long-run kill rate per target;
if at most 2 shots are fired per target (SLS);

m(2) means mean number of shots per target (SLS);

s(e=) means probability an engaged target is killed if shots are fired until BDA
asserts a kill;

m(es) means mean number of shots per target if shoot until BDA asserts a kill.




Conclusions/Insights from Table 1

Here are some observations that can be made after viewing Table 1.
(@)  For small px (0.3, 0.5) even poor-mediocre BDA capability (b = 0.5, 0.7) can
leverage up the probability of kill per target engaged quite dramatically, and at
modest price in shots per target engaged when SLS(2) is employed (shoot, look,
if failure is stated, shoot once more only).
(b)  While SLS5(2) is less effective than is a fire-and-forget salvo of 2 shots it can
be almost as good even for low px and b (BDA success probability), but the shot-
per-target engaged economy is substantial, and this increases dramatically with
both pk and b.
() Use of SLS(=), i.e. firing until the target is reported killed, seems unjustified
for very low BDA capability (b = 0.5); there will be many wasted shots and much
leakage at low pk. This (extreme) tactic becomes much more attractive relative to
SLS(2) as BDA capability increases (b = 0.7, 0.9, 0.95) particularly when pg is
relatively high (0.7 or higher). Under such conditions SLS(e) costs only a little
more than SL.S(2), and much less than a salvo of 2, while leveraging up the kills
per target engaged considerably when px is realistically moderate (0.5, 0.7).
(d)  An unmodeled issue: any form of SLS may well put the firer in greater

jeopardy than will salvoing 2 (or more) and evasively disappearing.

1.1 The Shoot-Look-Shoot Tactic or Decision Rule
We now describe in more detail one of the most popular and natural tactics of
a system that has the option of shooting, looking, and finally moving on to

another target.

Tactic: Shoot-Look-Shoot, not more than r times (abbreviates SLS(r))
This means that if a Look, after say, the first shot, says that kill has occurred,

then no more shots are fired at that target; note that this may well be wrong, and




a valid and valuable target has escaped without further prosecution; such targets
are sometimes called leakers, and may be active threats to protected assets. But if
shots have been fired, this is the end so far as the particular shooter is concerned.
Another target is selected and the process is re-initiated. Note that we do not
adjust the number of repeated shots at a target to its, perhaps gradually
perceived, value, alone or in comparison with other target opportunities that
may appear. Such problems will be formulated and addressed in another place.
Versions of such problems have been treated in the NPS Master’s Degree in

Operations Research thesis by Song (1996).

1.2 Measures of Effectiveness

We mention now a number of different measures of our simple system’s
effectiveness.
(A) Long-run Rate of Kills per Shot (inverse of Shots per Kill). Let K(#) be
the random number of target kills actually achieved in ¢ shots. Then a plausible
measure of, say, an SLS(r) policy with parameters px and bjj is the per-shot
(mean) kill rate K(t)/t. Suppose a great many targets are engaged, so ¢ becomes
large. Then it becomes interesting to examine the long-run kill rate (LRKR):

K(r)=lim E[QK—(Q'L]

t—o0 t
It turns out that the above can be evaluated explicitly using renewal-reward theory,
cf. Ross (1983). We quote the results subsequently.

Notice that maximizing the LRKR as a function of r or pg, or b;; may not be an
optimum strategy. If r is made large in order to, say, attempt to compensate for
weak BDA capability, then unnecessary “overkill” shots are likely and the |
defense system tends to waste attention that might be better spent elsewhere.

This effort could be especially counterproductive if there are several/many




targets concentrated in time and space, and the objective is to prevent any from
getting through the defense layer considered.

In a later section we present several tables and graphs that illustrate the
tradeoffs between kill probability and BDA capability (probability of correct
assessment of a shot’s effect). These are given for selected values of Long Run
Kill Rate, and refer only to the Shoot-Look-Shoot policy in which r = 2. However
our formulas allow exploration of such tradeoffs for any values of r and kill and
classification parameters.

(B)  Probability of Kill per Target Engaged. This is seen to be dependent
upon both the probability of kill by an individual shot, and also upon the
probability with which the BDA system assesses the outcome. If, for example, b
is large then too few shots are taken at a target. See Table 1 for information as to
how “good BDA” can efficiently leverage up the probability of kill per target
engaged.

(O  Shots Wasted. The mean or expected number of shots or bombs wasted
on already-dead targets is easily calculated under the assumptions of our BDA
model.

Other measures may alsq be relevant and interesting.

2. Calculating the Long-Run Kill Rate (LRKR): An Application of

Renewal-Reward Theory

In this section we address the evaluation of MOE(A), the LRKR in terms of
the basic parameters. To do so incidentally involves evaluation of MOE(B) and
other relevant quantities. The method uses the viewpoint of renewal-reward theory,
for an exposition of which see Ross (1983), Chapter 3.

Think of each defense encounter with a new target as a cycle of random

duration, or number of shots, C(r). A new target is first fired on/engaged with




one shot and the result judged; if the verdict is that a miss has occurred another
shot is fired, and its result judged, and so on until either (i) the judgment is that a
kill has occurred or (ii) r shots have been expended, whichever occurs first. This
event marks a cycle termination, whereupon another cycle is initiated (new target
is prosecuted). Of course if targets occur infrequently in time the new-target
encounter may be delayed, but not in terms of expended shots.

The result to be used is this. Suppose

(2.1)

{1 if a target kill occurs in cycle #;
K, =

0 if no target kill occurs in cycle n;
K}, is the reward. Cy, is the duration of cycle n, measured in number of shots. It is
clear that {Cy, n =1,2,...} is a sequence of iid random variables, as is {Kj,
n=1,2,...}, but they are not necessarily independent. Renewal-reward theory

states that LRKR is given by

'LRKR(r)= lim E[th); . 32‘]] 2.2)

Thus we need to evaluate both s(r) = E[K,] and m(r) = E[C,]. A backward-

equation or first-step approach can be used for both.

To evaluate s(r) = E[K,] = P{Ky, = 1} argue that on the first shot either (i) the

target is killed, an event of probability pk, or (ii) the target is not killed and this is

correctly recognized, after which the process starts over but with r — 1 shots to go;
the probability of this latter event is (1 — px)bgs(r — 1). Thus

s(r)=1-pg +(1-px )bags(r - 1). (2.3)
This first-order difference equation can be easily solved; subject to initial

condition s(1) = px,




_ 1_((1_pK)baa)r
S(’)"’K[ -(-P)ba | @4)
For r = 2, a usual situation,
5(2) = px[1+(1- Pk )ba] < P[2- PK]- (2.5)

It is seen that in any case s(r) <1, and that it doesn’t depend on the kill classification
probabilities by, bxa, which is initially surprising; it does depend on the probability
of recognizing that an alive target remains alive after a missed shot.

Next consider m(r) = E[C,]. Again condition on the first shot’s outcome. If, (i),
the target is killed and this is correctly recognized, or, if missed, and this
incorrectly classed as a kill, then the first component of the cycle-length
expectation is 1- (PKbkk +(1-pk )bak)- If, (ii), the target is missed and this correctly’
classified then the second component can be expressed as [1+m(r — D)(1-pk)bas
since in effect the process restarts (the Markov property) but with one fewer
possible shots. Finally (iii) suppose the first shot kills the target and that kill goes
unrecognized; then the final expected cycle component is seen to be

[1+ m*(r- 1)]prka, where m*(x) is the mean of the number of shots to either call a

killed target killed, or x, whichever occurs first. Adding, we conclude that

m(r)= 1(PKbkk +(1-p K)bak) +[1+m(r-1))(1- pg )baq + [1 +m*(r— 1)]p1<bka

(2.6)
=1+m(r —1)(1-px )by, + " (r = pxbia,
a first-order difference equation. The function m’(x) satisfies
m'(x)=1-by + [l +m(x— 1)]bka =1+m"(x - Dby, (2.7)

which is solved by simple recursion from m*(1) = 1;



1-(1-by)*
— 5

If this is substituted into (2.6) and the latter solved subject to m(1) =1 by

m'(x)= (2.8)

successive substitution and series summation there results this formula:

1-[(1- p )baa|
)= e
P L o o ot |
b | 1-(1-Pk)ba 1~ (1~ pK)baa/bra
For r = 2 this can be seen to equal
m(r) =1+ pxbgg +(1- px )baa (2.10)

An explicit, but messy formula is now available for the long-run kill rate;

from (2.2) it is just
LRKR(r) = ()’
For r = 2 it becomes
1+(1-
LRKR(2)= 22 - _P K[ 1+ (1~ Pk )bus] @.11)

m(2) 1+ pxbyg +(1- Pk )bua

- An interesting extreme case is one in which shots are fired, or bombs
dropped, until BDA asserts that a kill has occurred. This is equivalent to letting
7 — o in (2.4) to get s(=), and also in (2.9) to get m(es); alternatively do this latter
in (2.6) and (2.8). The results:

s(e0) = ——FK (2.12)

10




o) = LF PKDka /bpc |
m(eo) = (- (2.13)

These formulas are derived independently in Appendix A. From these we obtain

oS px ‘
LRKR(=)= P B (2.14)

An additional measure of performance is the expected number of wasted shots
per target engaged: the expected number of shots that are fired after the target is
killed. It is

w(eo) = (1- b )/bxk » (2.15)

which can be sobering if bxx happens to be small.

3. Illustrations of Tradeoffs
To illustrate the message of our formulas, look at this example: for LRKR(2),
i.e. Shoot-Look-Shoot, examine the tradeoff between px and a simplified
expression of sensor-look capability: b = by, = bgx. That is, assume that both error
probabilities bgx and by, are equal (to 1 - b). Then fix the value of long-run kills per
shot at L and examine the tradeoff between px and b. Figures 1, 2, and 3 depict
this tradeoff for increasing L values (L = 0.5, 0.75, 0.9). The forﬁula used appears
at the top of each graph; it comes from (2.11) by fixing L and solving for b as a
function (quadratic) of pk.
L1+pg)-—
Hprit)= PK(I—( mjf )L(;;I; -1 oD

The lesson is that there is a tradeoff: larger b can compensate for smaller pg,

but, as required L increases, the feasible ranges for which the tradeoff exists (to
realize L) decreases: both px and b must be generally higher to achieve L =0.9

than they need to be to obtain L = 0.5. Both formulas (2.11) and (2.14) show that

11




kills per shot, L, can never exceed pk, but kills per target engaged, given by s(r), can

become arbitrarily close to one if 7 is large; see (2.12) with by, approaching umty
To further explore this last point suppose pk is relatively low and it is desired

to leverage the kills/item targeted (not per shot fired, or bomb dropped) to a

higher level. Ways to do this are:

(@)  Shoot a salvo of exactly 2 shots at the target (no BDA), or drop 2 bombs

per target. Then the long-run kill rate per target engaged is

k(2)=1-(Q1-pr)2 (3.2)
The long-run cost in shots per target engaged is f(2) = 2; in general if a fixed
number of shots, 7, is fired f(r) =r.

(b)  Shoot-Look-Shoot (2). The long-run kill rate per target engaged is

| s(2) = px[1+(1-px )?] (3.3)

and the mean number of shots per target engaged is

m(2) =1+ px(1-b)+(1-px)b. (34)
Since there is always the probability 1 - b of making an error and not shooting a
needed second shot (or shooting a superfluous one), the probability of target kill
s(2) is never greater than k(2), being equal to it only when bg; = 1. (There is no
BDA, so there are no BDA errors.)
(¢)  Shoot-Look-Shoot («=). Here we get for the probability that a target is

killed from expression (2.12),

co)=—0PK
R R 3

which can become arbitrarily close to unity for fixed px if b — 1. The mean

number of shots per target engaged is, from (2.13),

12




_ T+ px((A-b)/b)
1-(1-px)b

- b+ pK(l - b)
b(1-(1-pk)b)

m(eo)
(3.6)

If the target or threshold desired kill probability is k <1- (1-p K)2 then
option (a) will achieve it, but at a price of unnecessary shots. E.G. if k¥ = 0.85 then
a lower threshold value for px is px = 0.61 but at a cost of 2 shots per target. If
option (b) is adopted with b = 1.0 and if px = 0.61 then k = 0.85 is achieved but at
the cost in shots per target of m(2) = 2 - px = 2 - 0.61 = 1.39, decisively below 2. If
pk = 0.7 then a BDA success rate of at least b = 0.71 is required, and the cost in’
shots per target is m(2) =1 + 0.7(1 - 0.71) + 0.3(0.71) = 1.42, still well below 2.

Discussion

The leverage of per-target kill probability by good BDA (relatively high
b=ba= bik) is well-illustrated in Table 1, e.g. by observing the effect of
increasing b on small pg, px = 0.3, for SLS(2) and SLS(e): even for b = 0.7 the
probability of kill per target engaged is nearly doubled and in less than an
average of 2 shots (SLS(2); 1.6), or a little more (SLS(e); 2.2). Even a relatively
small b-value, e.g. b ¥'0.5, has a noticeable effect, doing almost as well using
- SLS(2) and S(2) and at 75% of the number of shots.

In many ways this analysis is oversimplified, and is clearly incomplete. For
instance, we do not here consider the delay and traffic handling capacity of the
BDA service system, nor its cost. In Appendix B we do specify some convenient,
if tentative, analytical expressions for probability levels as a function of cost of

system acquisition. Further such issues will be addressed in subsequent work.

13




Appendix A

Self-Contained Derivation of Mean Cycle Length
When r = « (Shoot Until Target Judged Killed)

Let m4(e) be the mean number of shots fired (bombs dropped) until an
initially active (or alive) target is judged dead (the judgment may be in error). Let
mp(ee) be the mean number of shots fired until a killed target is (finally) judged
dead. Let s4(e0) be the probability that an initially active (new) target is dead when
it is judged dead, and let 5;(e°) be the probability that an initially active target is
not dead when it is judged dead; this is the probability that leakage occurs.

Start with the mean cycle length for new targets, m,(). Then, conditionally

on the outcome of the first shot and its judged effect,
1, with prob. pxby + (1= px )bax
my(e)={1+my(e), with prob. (1-pg)b, (A1)

1+my (), with prob. pxby,

o 1ig(e0) = 1+ (o)1= p Jbgq + My ()P Kbry | (A2)
Similarly,
1, with prob. b
my(=)=9 (A-3)
: 1+ mk(°°), with prob. bka =1- bkk
mk(°°) =1+ mk(”)(l - bkk) (A.4)
=1/by .

e (o)1= (1= px bag) = 1+ Prcbaami (<)
| ) 1+ pby - %kk . (A.5)
oo ma(°° = 1—(1-—pK)baa .

14




Similar equations can be written for sy(=) and 3,(c):

1 with prob. px
Sa(>) = .
sz(>)  with prob. (1-pg )b,
Consequently,
sa(=)=1-px +5, (°°)[(1 - PK)baa]
- PK.
1- [(1 - pK)baa]
) 1 with prob. (1 -PK )bak
5,(e0)=
’ 52(=)  with prob. (1- px )ba-
Consequently,

§a(°°) =1 (1_ pK)bak +§a(°°) : (1 - pK)baa

(1-px)bax
1 "(1 - pK)baa .

These agree with results obtained by letting 7 — <= in our previous formulas.

15




Appendix B

Parametric Models for the Cost of Achieving Probabilities

Suppose a higher value of kill probability, pk, or of correct BDA, bxx and/or
baa, can be obtained at increased acquisition cost, D (in dollars). It is convenient to
represent the cost-related payoff in terms of probabilities by paramétric cost
functions. Here are some possibly useful examples; they can be recognized as

logistic transformations:

p(D)= P(=)D/Do(K))". E1)
1+(D/Do(K))*

a>0,Dp(K)>0,0<p(e0) <1. Notice that if acquisition cost becomes large (D — eo)

then kill probability reaches a limit, p(e<), which is no greater than 1; if D = Dg the

resulting px-value is 1/2 of its ultimate. The parameter a controls the sharpness

of the response of px(D) to increases in expenditure, D: if 4 is very small (e.g. 1/2)

the approach to p(e) is quite slow; if 2 becomes large, expenditures below Dy

have small effect, while if above Dy they produce considerable payoff.
Similar models can be hypothesized for the C4ISR assets that generate BDA:

_ b (=)(D/Do(kk))’
b (D)= ©+ (D) Do(ke)) (B.2)
and
oo (D) = 228 (e=)D/ Do(“Z)C . (B.3)
1+(D/Dy(a))

The constants play the same roles as those for (B.1). There is no need that any be

the same.
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It is a straightforward non-linear optimization problem to allocate expendi-
tures to elements of a defense system that will, for example, maximize the long-

run expected number of fargets killed per dollar expended.
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